3,261 research outputs found

    Case studies in accounting research

    Get PDF
    In January 1996, we co-hosted an ICAEW-sponsored conference, Beneath the Numbers; Reflections on the Use of Qualitative Methods in Accounting Research. The conference in turn gave rise to an edited collection (Humphrey and Lee, 2004), The Real Life Guide to Accounting Research: A Behind-the-Scenes View of Using Qualitative Research Methods (hereafter RLGAR). Both the conference and the book were intended deliberately to provide ‘behind the scenes’ views or ‘insider accounts’ of what it is like actually to conduct qualitative accounting research and the types of lessons that people providing such accounts had gained from their experiences, rather than offering prescriptive, textbook accounts of how to do qualitative research. The capacity to organize a conference that was based on critical reflections of peoples experience of using qualitative research methods in accounting was an expression of how far qualitative research methods such as case studies had been practised and progressed at that point, more than twenty years ago. As the conference provided the start of collaboration between the two of us, we use it as a landmark in this chapter to provide a reflective, joint account about the development and use of case studies in accounting prior to 1996 and then through the intervening years, closing with some consideration of their future potential

    Quantum Monte Carlo Calculations of Pion Scattering from Li

    Full text link
    We show that the neutron and proton transition densities predicted by recent quantum Monte Carlo calculations for A=6,7 nuclei are consistent with pion scattering from 6Li and 7Li at energies near the Delta resonance. This has provided a microscopic understanding of the enhancement factors for quadrople excitations, which were needed to describe pion inelastic scattering within the nuclear shell model of Cohen and Kurath.Comment: 10 pages, REVTeX, 3 postscript figures; added calculation of elastic and inelastic pion scattering from 6Li at multiple energie

    Nuclear Resonance Vibrational Spectroscopy of Iron Sulfur Proteins

    Full text link
    Nuclear inelastic scattering in conjunction with density functional theory (DFT) calculations has been applied for the identification of vibrational modes of the high-spin ferric and the high-spin ferrous iron-sulfur center of a rubredoxin-type protein from the thermophylic bacterium Pyrococcus abysii

    DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes

    Full text link
    Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to explain the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer

    Kaon B Parameter in Quenched QCD

    Full text link
    I calculate the kaon B-parameter with a lattice simulation in quenched approximation. The lattice simulation uses an action possessing exact lattice chiral symmetry, an overlap action. Computations are performed at two lattice spacings, about 0.13 and 0.09 fm (parameterized by Wilson gauge action couplings beta=5.9 and 6.1) with nearly the same physical volumes and quark masses. I describe particular potential difficulties which arise due to the use of such a lattice action in finite volume. My results are consistent with other recent lattice determinations using domain-wall fermions.Comment: 23 pages, Revtex, 16 postscript figure

    Enhanced magnetocaloric effect in frustrated magnets

    Full text link
    The magnetothermodynamics of strongly frustrated classical Heisenberg antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The field induced adiabatic temperature change (dT/dH)_S is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. Theoretical predictions are confirmed with extensive Monte Carlo simulations.Comment: 7 page

    Optical properties of the pseudogap state in underdoped cuprates

    Full text link
    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome. In addition, no large increase in optical effective mass has been observed, even at dopings as low as 1%. We show that this behavior is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. In this model, the overall reduction in optical conductivity in the approach to the Mott insulating state is caused not by an increase in effective mass, but by a Gutzwiller factor, which describes decreased coherence due to correlations, and by a shrinking of the Fermi surface, which decreases the number of available charge carriers. We also show that in this model, the pseudogap does not modify the low-temperature, low-frequency behavior, though the magnitude of the conductivity is greatly reduced by the Gutzwiller factor. Similarly, the profile of the temperature dependence of the microwave conductivity is largely unchanged in shape, but the Gutzwiller factor is essential in understanding the observed difference in magnitude between ortho-I and -II YBa2_2Cu3_3Oy_y.Comment: 9 pages, 6 figures, submitted to Eur. Phys. J.

    Leptonic μ \mu - and τ \tau -decays: mass effects, polarization effects and O(α) O(\alpha) radiative corrections

    Full text link
    We calculate the radiative corrections to the unpolarized and the four polarized spectrum and rate functions in the leptonic decay of a polarized μ \mu into a polarized electron. The new feature of our calculation is that we keep the mass of the final state electron finite which is mandatory if one wants to investigate the threshold region of the decay. Analytical results are given for the energy spectrum and the polar angle distribution of the final state electron whose longitudinal and transverse polarization is calculated. We also provide analytical results on the integrated spectrum functions. We analyze the me0 m_e \to 0 limit of our general results and investigate the quality of the me0 m_e \to 0 approximation. In the me0 m_e \to 0 case we discuss in some detail the role of the O(α) O(\alpha) anomalous helicity flip contribution of the final electron which survives the me0 m_e \to 0 limit. The results presented in this 0203048 also apply to the leptonic decays of polarized τ \tau -leptons for which we provide numerical results.Comment: 39 pages, 11 postscript figures added. Updated version. Four references added. A few text improvements. Final version to appear in Phys.Rev.

    Enhancement of nonclassical properties of two qubits via deformed operators

    Full text link
    We explore the dynamics of two atoms interacting with a cavity field via deformed operators. Properties of the asymptotic regularization of entanglement measures proving, for example, purity cost, regularized fidelity and accuracy of information transfer are analyzed. We show that the robustness of a bipartite system having a finite number of quantum states vanishes at finite photon numbers, for arbitrary interactions between its constituents and with cavity field. Finally it is shown that the stability of the purity and the fidelity is improved in the absence of the deformation parameters

    Nucleation of a sodium droplet on C60

    Full text link
    We investigate theoretically the progressive coating of C60 by several sodium atoms. Density functional calculations using a nonlocal functional are performed for NaC60 and Na2C60 in various configurations. These data are used to construct an empirical atomistic model in order to treat larger sizes in a statistical and dynamical context. Fluctuating charges are incorporated to account for charge transfer between sodium and carbon atoms. By performing systematic global optimization in the size range 1<=n<=30, we find that Na_nC60 is homogeneously coated at small sizes, and that a growing droplet is formed above n=>8. The separate effects of single ionization and thermalization are also considered, as well as the changes due to a strong external electric field. The present results are discussed in the light of various experimental data.Comment: 17 pages, 10 figure
    corecore